Search results
Results from the WOW.Com Content Network
The codeword for that symbol is the string of "0"s and "1"s that records which half of the divides it fell on. This method was proposed in a later (in print) technical report by Fano (1949). Shannon–Fano codes are suboptimal in the sense that they do not always achieve the lowest possible expected codeword length, as Huffman coding does. [ 1 ]
Byte pair encoding [1] [2] (also known as digram coding) [3] is an algorithm, first described in 1994 by Philip Gage, for encoding strings of text into tabular form for use in downstream modeling. [4] A slightly-modified version of the algorithm is used in large language model tokenizers. The original version of the algorithm focused on ...
In a typical document classification task, the input to the machine learning algorithm (both during learning and classification) is free text. From this, a bag of words (BOW) representation is constructed: the individual tokens are extracted and counted, and each distinct token in the training set defines a feature (independent variable) of each of the documents in both the training and test sets.
MDL applies in machine learning when algorithms (machines) generate descriptions. Learning occurs when an algorithm generates a shorter description of the same data set. The theoretic minimum description length of a data set, called its Kolmogorov complexity, cannot, however, be computed.
There is a close connection between machine learning and compression. A system that predicts the posterior probabilities of a sequence given its entire history can be used for optimal data compression (by using arithmetic coding on the output distribution). Conversely, an optimal compressor can be used for prediction (by finding the symbol that ...
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
This can be done using a variety of techniques, such as one-hot encoding, label encoding, and ordinal encoding. The type of feature that is used in feature engineering depends on the specific machine learning algorithm that is being used. Some machine learning algorithms, such as decision trees, can handle both numerical and categorical features.
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled data (unsupervised learning).An autoencoder learns two functions: an encoding function that transforms the input data, and a decoding function that recreates the input data from the encoded representation.