Search results
Results from the WOW.Com Content Network
Returns string with the first n occurrences of target replaced with replacement. Omitting count will replace all occurrences. Space counts as a character if placed in any of the first three parameters.
The algorithm works by scanning a sequence of terminal symbols and building a list of all the symbol pairs which it has read. Whenever a second occurrence of a pair is discovered, the two occurrences are replaced in the sequence by an invented nonterminal symbol, the list of symbol pairs is adjusted to match the new sequence, and scanning ...
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both).. Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
The Boyer–Moore algorithm searches for occurrences of P in T by performing explicit character comparisons at different alignments. Instead of a brute-force search of all alignments (of which there are n − m + 1 {\displaystyle n-m+1} ), Boyer–Moore uses information gained by preprocessing P to skip as many alignments as possible.
We assume all the substrings have a fixed length m. A naïve way to search for k patterns is to repeat a single-pattern search taking O ( n+m ) time, totaling in O ( (n+m)k ) time. In contrast, the above algorithm can find all k patterns in O ( n + km ) expected time, assuming that a hash table check works in O (1) expected time.
The iteration form of the Eiffel loop can also be used as a boolean expression when the keyword loop is replaced by either all (effecting universal quantification) or some (effecting existential quantification). This iteration is a boolean expression which is true if all items in my_list have counts greater than three: