Search results
Results from the WOW.Com Content Network
English: A unit circle with sine (sin), cosine (cos), tangent (tan), cotangent (cot), versine (versin), coversine (cvs), exsecant (exsec), excosecant (excsc) and (indirectly) also secant (sec), cosecant (csc) as well as chord (crd) and arc labeled as trigonometric functions of angle theta. It is designed as alternative construction to "Circle ...
Since C = 2πr, the circumference of a unit circle is 2π. In mathematics, a unit circle is a circle of unit radius—that is, a radius of 1. [1] Frequently, especially in trigonometry, the unit circle is the circle of radius 1 centered at the origin (0, 0) in the Cartesian coordinate system in the Euclidean plane.
English: This is a graphical construction of the various trigonometric functions from a chord AD (angle θ) of the unit circle centered at O. In addition to the modern trigonometric functions sin (sine), cos (cosine), tan (tangent), cot (cotangent), sec (secant), and csc (cosecant), the diagram also includes a few trigonometric functions that have fallen into disuse: chord, versin (versine or ...
Geometry is used extensively in trigonometry. Angle – the angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. Angles formed by two rays lie in a plane, but this plane does not have to be a Euclidean plane.
English: Some common angles (multiples of 30 and 45 degrees) and the corresponding sine and cosine values shown on the Unit circle.The angles (θ) are given in degrees and radians, together with the corresponding intersection point on the unit circle, (cos θ, sin θ).
English: This file was made to help understand rotation about the center of a unit circle according to the term used. On the left hand side, the clockwise rotation is displayed with key values: 0° rightward, -90° downward, -180° leftward, -270° upward, and -360° rightward again, making a full turn.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of π radians. [2] Since sin ( x ) = cos ( x − π / 2 ) , {\displaystyle \sin(x)=\cos(x-\pi /2),} the case of a sine can be omitted from this definition.