Search results
Results from the WOW.Com Content Network
The Luhn mod N algorithm generates a check digit (more precisely, a check character) within the same range of valid characters as the input string. For example, if the algorithm is applied to a string of lower-case letters (a to z), the check character will also be a lower-case letter. Apart from this distinction, it resembles very closely the ...
The final digit of a Universal Product Code, International Article Number, Global Location Number or Global Trade Item Number is a check digit computed as follows: [3] [4]. Add the digits in the odd-numbered positions from the left (first, third, fifth, etc.—not including the check digit) together and multiply by three.
The check digit is computed as follows: Drop the check digit from the number (if it's already present). This leaves the payload. Start with the payload digits. Moving from right to left, double every second digit, starting from the last digit. If doubling a digit results in a value > 9, subtract 9 from it (or sum its digits).
The validity of a digit sequence containing a check digit is defined over a quasigroup. A quasigroup table ready for use can be taken from Damm's dissertation (pages 98, 106, 111). [3] It is useful if each main diagonal entry is 0, [1] because it simplifies the check digit calculation.
The check digit is a weighted modulo-103 checksum. It is calculated by summing the start code 'value' to the products of each symbol's 'value' multiplied by its position's weight in the barcode string. The start symbol and first encoded symbol are in position 1. The sum of the products is then reduced modulo 103.
The simplest checksum algorithm is the so-called longitudinal parity check, which breaks the data into "words" with a fixed number n of bits, and then computes the bitwise exclusive or (XOR) of all those words. The result is appended to the message as an extra word.
1 decimal digit sum Verhoeff algorithm: 1 decimal digit sum Damm algorithm: 1 decimal digit Quasigroup operation: Universal hash function families
To find any of a large number, say k, fixed length patterns in a text, a simple variant of the Rabin–Karp algorithm uses a Bloom filter or a set data structure to check whether the hash of a given string belongs to a set of hash values of patterns we are looking for: