enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For example, the following algorithm is a direct implementation to compute the function A(x) = (x−1) / (exp(x−1) − 1) which is well-conditioned at 1.0, [nb 12] however it can be shown to be numerically unstable and lose up to half the significant digits carried by the arithmetic when computed near 1.0.

  3. Significand - Wikipedia

    en.wikipedia.org/wiki/Significand

    In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.

  4. Mixed-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Mixed-precision_arithmetic

    A floating-point number is typically packed into a single bit-string, as the sign bit, the exponent field, and the significand or mantissa, from left to right. As an example, a IEEE 754 standard 32-bit float ("FP32", "float32", or "binary32") is packed as follows: The IEEE 754 binary floats are:

  5. IEEE 754-1985 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754-1985

    Now we can read off the fraction and the exponent: the fraction is .01 2 and the exponent is −3. As illustrated in the pictures, the three fields in the IEEE 754 representation of this number are: sign = 0, because the number is positive. (1 indicates negative.) biased exponent = −3 + the "bias".

  6. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    Sign bit: 1 bit; Exponent: 11 bits; Significand precision: 53 bits (52 explicitly stored) The sign bit determines the sign of the number (including when this number is zero, which is signed). The exponent field is an 11-bit unsigned integer from 0 to 2047, in biased form: an exponent value of 1023 represents the actual zero. Exponents range ...

  7. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).

  8. Octuple-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Octuple-precision_floating...

    Sign bit: 1 bit; Exponent width: 19 bits; Significand precision: 237 bits (236 explicitly stored) The format is written with an implicit lead bit with value 1 unless the exponent is all zeros. Thus only 236 bits of the significand appear in the memory format, but the total precision is 237 bits (approximately 71 decimal digits: log 10 (2 237 ...

  9. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    The integer n is called the exponent and the real number m is called the significand or mantissa. [1] The term "mantissa" can be ambiguous where logarithms are involved, because it is also the traditional name of the fractional part of the common logarithm. If the number is negative then a minus sign precedes m, as in