Search results
Results from the WOW.Com Content Network
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
The Pythagorean theorem states that the sum of the areas of the two squares on the legs (a and b) of a right triangle equals the area of the square on the hypotenuse (c). Thales' theorem states that if AC is a diameter, then the angle at B is a right angle.
The Bride's chair proof of the Pythagorean theorem, that is, the proof of the Pythagorean theorem based on the Bride's Chair diagram, is given below. The proof has been severely criticized by the German philosopher Arthur Schopenhauer as being unnecessarily complicated, with construction lines drawn here and there and a long line of deductive ...
A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Using the Pythagorean theorem to compute two-dimensional Euclidean distance. In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them.
Triangles based on Pythagorean triples are Heronian, meaning they have integer area as well as integer sides. The possible use of the 3 : 4 : 5 triangle in Ancient Egypt, with the supposed use of a knotted rope to lay out such a triangle, and the question whether Pythagoras' theorem was known at that time, have been much debated. [3]
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae , it is one of the basic relations between the sine and cosine functions.