enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluorescent glucose biosensor - Wikipedia

    en.wikipedia.org/wiki/Fluorescent_glucose_biosensor

    Fluorescent glucose biosensors are devices that measure the concentration of glucose in diabetic patients by means of sensitive protein that relays the concentration by means of fluorescence, an alternative to amperometric sension of glucose. Due to the prevalence of diabetes, it is the prime drive in the construction of fluorescent biosensors.

  3. Glucose oxidase - Wikipedia

    en.wikipedia.org/wiki/Glucose_oxidase

    Enzymatic glucose biosensors use an electrode instead of O 2 to take up the electrons needed to oxidize glucose and produce an electronic current in proportion to glucose concentration. [13] This is the technology behind the disposable glucose sensor strips used by diabetics to monitor serum glucose levels. [14]

  4. Biosensor - Wikipedia

    en.wikipedia.org/wiki/Biosensor

    A common example of a commercial biosensor is the blood glucose biosensor, which uses the enzyme glucose oxidase to break blood glucose down. In doing so it first oxidizes glucose and uses two electrons to reduce the FAD (a component of the enzyme) to FADH 2. This in turn is oxidized by the electrode in a number of steps.

  5. GlySens ICGM - Wikipedia

    en.wikipedia.org/wiki/GlySens_ICGM

    GlySens, a biomedical technology company, is a privately owned corporation developing a long term internal continuous glucose monitor in order to effectively manage and observe glucose levels in real time. The GlySens ICGM system is the world's first surgically implanted continuous glucose monitoring system to demonstrate an 18-month ...

  6. Leland Clark - Wikipedia

    en.wikipedia.org/wiki/Leland_Clark

    Leland C. Clark Jr. (December 4, 1918 – September 25, 2005) was an American biochemist born in Rochester, New York. [1] He is most well known as the inventor of the Clark electrode, a device used for measuring oxygen in blood, water and other liquids. [2]

  7. Bio-FET - Wikipedia

    en.wikipedia.org/wiki/Bio-FET

    Bio-FETs couple a transistor device with a bio-sensitive layer that can specifically detect bio-molecules such as nucleic acids and proteins. A Bio-FET system consists of a semiconducting field-effect transistor that acts as a transducer separated by an insulator layer (e.g. SiO 2) from the biological recognition element (e.g. receptors or probe molecules) which are selective to the target ...

  8. Clark electrode - Wikipedia

    en.wikipedia.org/wiki/Clark_electrode

    The Clark oxygen electrode laid the basis for the first glucose biosensor (in fact the first biosensor of any type), invented by Clark and Lyons in 1962. [6] This sensor used a single Clark oxygen electrode coupled with a counter-electrode. As with the Clark electrode, a permselective membrane covers the Pt electrode.

  9. Electrochemical aptamer-based biosensors - Wikipedia

    en.wikipedia.org/wiki/Electrochemical_aptamer...

    Electrochemical aptamer-based (E-AB) biosensors is a device that takes advantage of the electrochemical and biological properties of aptamers to take real time, in vivo measurements. An electrochemical aptamer-based (E-AB) biosensor generates an electrochemical signal in response to specific target binding in vivo [ 3 ] The signal is measured ...