Ad
related to: laser weld strength calculation
Search results
Results from the WOW.Com Content Network
Laser beam welding (LBW) is a welding technique used to join pieces of metal or thermoplastics through the use of a laser. The beam provides a concentrated heat source, allowing for narrow, deep welds and high welding rates.
Processes like laser beam welding and electron beam welding give a highly concentrated, limited amount of heat, resulting in a small HAZ. Arc welding falls between these two extremes, with the individual processes varying somewhat in heat input. To calculate the heat input for arc welding procedures, the following formula is used:
Laser guided and stabilized welding (LGS-welding) is a process in which a laser beam irradiates an electrical heated plasma arc to set a path of increased conductivity. Therefore, the arc's energy can be spatial directed and the plasma burns more stable.
High-power lasers, such as those used in laser welding and cutting are typically measured by using a beamsplitter to sample the beam. The sampled beam has much lower intensity and can be measured by a scanning-slit or knife-edge profiler. Good beam quality is very important in laser welding and cutting operations. [5]
Direct laser welding of polymers. Similar to laser welding of metals, in direct laser welding the surface of the polymer is heated to create a melt zone that joins two components together. This approach can be used to create butt joints and lap joints with complete penetration. Laser wavelengths between 2 and 10.6 μm are used for this process ...
Welding - Studs and ceramic ferrules for arc stud welding: ISO 13919-1: Welding - Electron and laser-beam welded joints - Guidance on quality level for imperfections - Part 1: Steel ISO 13919-2: Welding - Electron and laser-beam welded joints - Guidance on quality level for imperfections - Part 2: Aluminium and its weldable alloys ISO 13920
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
M 2 is useful because it reflects how well a collimated laser beam can be focused to a small spot, or how well a divergent laser source can be collimated. It is a better guide to beam quality than Gaussian appearance because there are many cases in which a beam can look Gaussian, yet have an M 2 value far from unity. [1]
Ad
related to: laser weld strength calculation