enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  3. Finite-difference time-domain method - Wikipedia

    en.wikipedia.org/wiki/Finite-difference_time...

    Partial chronology of FDTD techniques and applications for Maxwell's equations. [5]year event 1928: Courant, Friedrichs, and Lewy (CFL) publish seminal paper with the discovery of conditional stability of explicit time-dependent finite difference schemes, as well as the classic FD scheme for solving second-order wave equation in 1-D and 2-D. [6]

  4. Electromagnetic field solver - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_field_solver

    The first uses a differential form of the governing equations and requires the discretization (meshing) of the entire domain in which the electromagnetic fields reside. Two of the most common approaches in this first class are the finite difference (FD) and finite element (FEM) methods.

  5. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    In numerical analysis, the Crank–Nicolson method is a finite difference method used for numerically solving the heat equation and similar partial differential equations. [1] It is a second-order method in time. It is implicit in time, can be written as an implicit Runge–Kutta method, and it is numerically stable.

  6. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. [ 1 ]

  7. Computational electromagnetics - Wikipedia

    en.wikipedia.org/wiki/Computational_electromagnetics

    Finite-difference frequency-domain (FDFD) provides a rigorous solution to Maxwell’s equations in the frequency-domain using the finite-difference method. [13] FDFD is arguably the simplest numerical method that still provides a rigorous solution. It is incredibly versatile and able to solve virtually any problem in electromagnetics.

  8. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.

  9. Finite-difference frequency-domain method - Wikipedia

    en.wikipedia.org/wiki/Finite-difference...

    The method shares many similarities to the finite-difference time-domain (FDTD) method, so much so that the literature on FDTD can be directly applied. The method works by transforming Maxwell's equations (or other partial differential equation) for sources and fields at a constant frequency into matrix form A x = b {\displaystyle Ax=b} .