Search results
Results from the WOW.Com Content Network
Burning all the oxygen delivered by the compressor stages would create temperatures (3,700 °F (2,040 °C)) high enough to significantly weaken the internal structure of the engine, but by mixing the combustion products with unburned air from the compressor at (600 °F (316 °C)) a substantial amount of oxygen (fuel/air ratio 0.014 compared to ...
The three-zone (reduced from four from the prototype) afterburner, or augmentor, contributes to the stealth of the aircraft by having fuel injectors integrated into thick curved vanes coated with ceramic radar-absorbent materials (RAM). These vanes replace the traditional fuel spray bars and flame holders and block line-of-sight of the turbines.
In full afterburner it produces a thrust of more than 30,000 pounds-force ... Specific fuel consumption: 0.562 lb/lbf/h (57.3 kg/kN/h) (dry thrust),
It features an eight-stage axial-flow compressor powered by two turbine stages, and is capable of generating up to 2,100 lb f (9.3 kN) of dry thrust, or more with an afterburner. At full throttle at sea level, this engine, without afterburner, consumes approximately 400 US gallons (1,500 L) of fuel per hour.
The Pratt & Whitney J58 (company designation JT11D-20) is an American jet engine that powered the Lockheed A-12, and subsequently the YF-12 and the SR-71 aircraft. It was an afterburning turbojet engine with a unique compressor bleed to the afterburner that gave increased thrust at high speeds.
The General Electric F110 is an afterburning turbofan jet engine produced by GE Aerospace (formerly GE Aviation). It was derived from the General Electric F101 as an alternative engine to the Pratt & Whitney F100 for powering tactical fighter aircraft, with the F-16C Fighting Falcon and F-14A+/B Tomcat being the initial platforms; the F110 would eventually power new F-15 Eagle variants as well.
Thrust is increased from 3900 kN to 4200 kN (5750 kN to 6100 kN with afterburner), while fuel consumption is reduced by 2%, and service life of the engine is increased to 300 hours. [ 19 ] [ 20 ] However, the temperature of exhaust is also increased from 700 to 800 °C, accordingly when in operation the engine temperature is also increased by ...
Fuel-saving devices are sold on the aftermarket with claims they may improve the fuel economy, the exhaust emissions, or optimize ignition, air flow, or fuel flow of automobiles in some way. An early example of such a device sold with difficult-to-justify claims is the 200 mpg ‑US (1.2 L/100 km) carburetor designed by Canadian inventor ...