Search results
Results from the WOW.Com Content Network
Alveolar pressure (PA) at end expiration is equal to atmospheric pressure (0 cm H 2 O differential pressure, at zero flow), plus or minus 2 cm H 2 O (1.5 mmHg) throughout the lung. On the other hand, gravity causes a gradient in blood pressure between the top and bottom of the lung of 20 mmHg in the erect position (roughly half of that in the ...
The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.
is the partial pressure of oxygen in the systemic veins (where it can actually be measured). Thus, the higher the diffusing capacity , the more gas will be transferred into the lung per unit time for a given gradient in partial pressure (or concentration) of the gas. Since it can be possible to know the alveolar oxygen concentration and the ...
Minute ventilation (or respiratory minute volume or minute volume) is the volume of gas inhaled (inhaled minute volume) or exhaled (exhaled minute volume) from a person's lungs per minute. It is an important parameter in respiratory medicine due to its relationship with blood carbon dioxide levels .
In obstructive lung disease, the FEV1 is reduced due to an obstruction of air escaping from the lungs. Thus, the FEV1/FVC ratio will be reduced. [4] More specifically, according to the National Institute for Clinical Excellence, the diagnosis of COPD is made when the FEV 1 /FVC ratio is less than 0.7 or [8] the FEV 1 is less than 75% of predicted; [9] however, other authoritative bodies have ...
The normal relaxed state of the lung and chest is partially empty. Further exhalation requires muscular work. Inhalation is an active process requiring work. [4] Some of this work is to overcome frictional resistance to flow, and part is used to deform elastic tissues, and is stored as potential energy, which is recovered during the passive process of exhalation, Tidal breathing is breathing ...
However, it is not practical to take a sample of gas from the alveoli in order to directly measure the partial pressure of oxygen. The alveolar gas equation allows the calculation of the alveolar partial pressure of oxygen from data that is practically measurable. It was first characterized in 1946. [1]
Pulmonary compliance is calculated using the following equation, where ΔV is the change in volume, and ΔP is the change in pleural pressure: = For example, if a patient inhales 500 mL of air from a spirometer with an intrapleural pressure before inspiration of −5 cm H 2 O and −10 cm H 2 O at the end of inspiration.