Search results
Results from the WOW.Com Content Network
Abstractly, naive Bayes is a conditional probability model: it assigns probabilities (, …,) for each of the K possible outcomes or classes given a problem instance to be classified, represented by a vector = (, …,) encoding some n features (independent variables).
Naive Bayes is a successful classifier based upon the principle of maximum a posteriori (MAP). This approach is naturally extensible to the case of having more than two classes, and was shown to perform well in spite of the underlying simplifying assumption of conditional independence .
This statistics -related article is a stub. You can help Wikipedia by expanding it.
a Bayes classifier, one that always chooses the class of highest posterior probability in case this posterior distribution is modelled by assuming the observables are independent, it is a naive Bayes classifier
In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition
Bayesian inference (/ ˈ b eɪ z i ə n / BAY-zee-ən or / ˈ b eɪ ʒ ən / BAY-zhən) [1] is a method of statistical inference in which Bayes' theorem is used to calculate a probability of a hypothesis, given prior evidence, and update it as more information becomes available.
It can be drastically simplified by assuming that the probability of appearance of a word knowing the nature of the text (spam or not) is independent of the appearance of the other words. This is the naive Bayes assumption and this makes this spam filter a naive Bayes model. For instance, the programmer can assume that:
A loss function is said to be classification-calibrated or Bayes consistent if its optimal is such that / = (()) and is thus optimal under the Bayes decision rule. A Bayes consistent loss function allows us to find the Bayes optimal decision function f ϕ ∗ {\displaystyle f_{\phi }^{*}} by directly minimizing the expected risk and without ...