Search results
Results from the WOW.Com Content Network
In computing, CUDA is a proprietary [1] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
PyTorch Tensors are similar to NumPy Arrays, but can also be operated on a CUDA-capable NVIDIA GPU. PyTorch has also been developing support for other GPU platforms, for example, AMD's ROCm [27] and Apple's Metal Framework. [28] PyTorch supports various sub-types of Tensors. [29]
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]
Many libraries support bfloat16, such as CUDA, [13] Intel oneAPI Math Kernel Library, AMD ROCm, [14] AMD Optimizing CPU Libraries, PyTorch, and TensorFlow. [10] [15] On these platforms, bfloat16 may also be used in mixed-precision arithmetic, where bfloat16 numbers may be operated on and expanded to wider data types.
The core package of Torch is torch.It provides a flexible N-dimensional array or Tensor, which supports basic routines for indexing, slicing, transposing, type-casting, resizing, sharing storage and cloning.
ROCm [3] is an Advanced Micro Devices (AMD) software stack for graphics processing unit (GPU) programming. ROCm spans several domains: general-purpose computing on graphics processing units (GPGPU), high performance computing (HPC), heterogeneous computing.
The Nvidia CUDA Compiler (NVCC) translates code written in CUDA, a C++-like language, into PTX instructions (an assembly language represented as American Standard Code for Information Interchange text), and the graphics driver contains a compiler which translates PTX instructions into executable binary code, [2] which can run on the processing ...
The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model.