enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    If a cyclic quadrilateral has side lengths that form an arithmetic progression the quadrilateral is also ex-bicentric. If the opposite sides of a cyclic quadrilateral are extended to meet at E and F, then the internal angle bisectors of the angles at E and F are perpendicular. [13]

  3. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  4. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]

  5. Harmonic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Harmonic_quadrilateral

    In Euclidean geometry, a harmonic quadrilateral, or harmonic quadrangle, [1] is a quadrilateral that can be inscribed in a circle (cyclic quadrilateral) in which the products of the lengths of opposite sides are equal. It has several important properties.

  6. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal. Bicentric quadrilateral: it is both tangential and cyclic.

  7. Antiparallel lines - Wikipedia

    en.wikipedia.org/wiki/Antiparallel_lines

    In any cyclic quadrilateral, any two opposite sides are antiparallel with respect to the other two sides. Lines l 1 {\displaystyle l_{1}} and l 2 {\displaystyle l_{2}} are antiparallel with respect to the line m {\displaystyle m} if they make the same angle with m {\displaystyle m} in the opposite senses.

  8. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    Ptolemy's inequality is often stated for a special case, in which the four points are the vertices of a convex quadrilateral, given in cyclic order. [2] [3] However, the theorem applies more generally to any four points; it is not required that the quadrilateral they form be convex, simple, or even planar.

  9. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center. More generally, an n-sided polygon with all its vertices on the same circle, also called the circumscribed circle, is called a cyclic polygon, or in the special case n = 4, a cyclic quadrilateral.