Search results
Results from the WOW.Com Content Network
Certain number-theoretic methods exist for testing whether a number is prime, such as the Lucas test and Proth's test. These tests typically require factorization of n + 1, n − 1, or a similar quantity, which means that they are not useful for general-purpose primality testing, but they are often quite powerful when the tested number n is ...
Primality certificates allow the primality of a number to be rapidly checked without having to run an expensive or unreliable primality test. "Succinct" usually means that the proof should be at most polynomially larger than the number of digits in the number itself (for example, if the number has b bits, the proof might contain roughly b 2 bits).
The progressions of numbers that are 0, 3, or 6 mod 9 contain at most one prime number (the number 3); the remaining progressions of numbers that are 2, 4, 5, 7, and 8 mod 9 have infinitely many prime numbers, with similar numbers of primes in each progression.
A prime number is a natural number that has no natural number divisors other than the number 1 and itself.. To find all the prime numbers less than or equal to a given integer N, a sieve algorithm examines a set of candidates in the range 2, 3, …, N, and eliminates those that are not prime, leaving the primes at the end.
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". [1]
Prime numbers are used in a number of applications such as hash table sizing, pseudorandom number generators and in key generation for cryptography. Therefore, finding very large prime numbers (on the order of (at least) 10 350 ≈ 2 1024 {\displaystyle 10^{350}\approx 2^{1024}} ) becomes very important and efficient primality testing ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Suppose we wish to determine whether n = 221 is prime.Randomly pick 1 < a < 220, say a = 38.We check the above congruence and find that it holds: = (). Either 221 is prime, or 38 is a Fermat liar, so we take another a, say 24: