enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...

  3. Vertical pressure variation - Wikipedia

    en.wikipedia.org/wiki/Vertical_pressure_variation

    A relatively simple version [1] of the vertical fluid pressure variation is simply that the pressure difference between two elevations is the product of elevation change, gravity, and density. The equation is as follows: =, where P is pressure, ρ is density, g is acceleration of gravity, and; h is height.

  4. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    Here η is the total fluid column height (instantaneous fluid depth as a function of x, y and t), and the 2D vector (u,v) is the fluid's horizontal flow velocity, averaged across the vertical column. Further g is acceleration due to gravity and ρ is the fluid density. The first equation is derived from mass conservation, the second two from ...

  5. Surface tension - Wikipedia

    en.wikipedia.org/wiki/Surface_tension

    h is the depth of the puddle in centimeters or meters. γ is the surface tension of the liquid in dynes per centimeter or newtons per meter. g is the acceleration due to gravity and is equal to 980 cm/s 2 or 9.8 m/s 2; ρ is the density of the liquid in grams per cubic centimeter or kilograms per cubic meter

  6. Airy wave theory - Wikipedia

    en.wikipedia.org/wiki/Airy_wave_theory

    intermediate depth – all other cases, ⁠ 1 / 20 ⁠ λ < h < ⁠ 1 / 2 ⁠ λ, where both water depth and period (or wavelength) have a significant influence on the solution of Airy wave theory. In the limiting cases of deep and shallow water, simplifying approximations to the solution can be made.

  7. Dispersion (water waves) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(water_waves)

    For a fixed water depth, long waves (with large wavelength) propagate faster than shorter waves. In the left figure, it can be seen that shallow water waves, with wavelengths λ much larger than the water depth h, travel with the phase velocity [2] = with g the acceleration by gravity and c p the phase speed. Since this shallow-water phase ...

  8. Pore water pressure - Wikipedia

    en.wikipedia.org/wiki/Pore_water_pressure

    If the water table is at depth d w in fine-grained soils, then the pore pressure at the ground surface is: [4] =, where: p g is the unsaturated pore water pressure (Pa) at ground level, g w is the unit weight of water (kN/m 3), = / d w is the depth of the water table (m),

  9. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Nevertheless, he had the opportunity to estimate the order of magnitude of the constant when he surmised that "the mean density of the earth might be five or six times as great as the density of water", which is equivalent to a gravitational constant of the order: [14] G ≈ (6.7 ± 0.6) × 10 −11 m 3 ⋅kg −1 ⋅s −2