enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. AVL tree - Wikipedia

    en.wikipedia.org/wiki/AVL_tree

    Animation showing the insertion of several elements into an AVL tree. It includes left, right, left-right and right-left rotations. Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree.

  3. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    A double left rotation at X can be defined to be a right rotation at the right child of X followed by a left rotation at X; similarly, a double right rotation at X can be defined to be a left rotation at the left child of X followed by a right rotation at X. Tree rotations are used in a number of tree data structures such as AVL trees, red ...

  4. Left rotation - Wikipedia

    en.wikipedia.org/wiki/Left_rotation

    AVL trees and red–black trees are two examples of binary search trees that use the left rotation. A single left rotation is done in O(1) time but is often integrated within the node insertion and deletion of binary search trees. The rotations are done to keep the cost of other methods and tree height at a minimum.

  5. Talk:AVL tree - Wikipedia

    en.wikipedia.org/wiki/Talk:AVL_tree

    Insertion into an AVL tree may be carried out by inserting the given value into the tree as if it were an unbalanced binary search tree, and then retracing one's steps toward the root, rotating about any nodes which have become unbalanced during the insertion (see tree rotation).

  6. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    The depth of a tree is the maximum depth of any vertex. Depth is commonly needed in the manipulation of the various self-balancing trees, AVL trees in particular. The root has depth zero, leaves have height zero, and a tree with only a single vertex (hence both a root and leaf) has depth and height zero.

  7. WAVL tree - Wikipedia

    en.wikipedia.org/wiki/WAVL_tree

    AVL trees are WAVL trees without the type of node that has both children of rank difference 2. [1] If a WAVL tree is created only using insertion operations, then its structure will be the same as the structure of an AVL tree created by the same insertion sequence, and its ranks will be the same as the ranks of the corresponding AVL tree.

  8. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Self-balancing binary trees solve this problem by performing transformations on the tree (such as tree rotations) at key insertion times, in order to keep the height proportional to log 2 (n). Although a certain overhead is involved, it is not bigger than the always necessary lookup cost and may be justified by ensuring fast execution of all ...

  9. Right rotation - Wikipedia

    en.wikipedia.org/wiki/Right_rotation

    AVL trees and red–black trees are two examples of binary search trees that use a right rotation. A single right rotation is done in O(1) time but is often integrated within the node insertion and deletion of binary search trees. The rotations are done to keep the cost of other methods and tree height at a minimum.