Search results
Results from the WOW.Com Content Network
In the field of artificial intelligence, an inference engine is a software component of an intelligent system that applies logical rules to the knowledge base to deduce new information. The first inference engines were components of expert systems. The typical expert system consisted of a knowledge base and an inference engine.
These issues led to the second approach to knowledge engineering: the development of custom methodologies specifically designed to build expert systems. [1] One of the first and most popular of such methodologies custom designed for expert systems was the Knowledge Acquisition and Documentation Structuring (KADS) methodology developed in Europe.
Knowledge representation and reasoning (KRR, KR&R, or KR²) is a field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks, such as diagnosing a medical condition or having a natural-language dialog.
Compiling comprehensive knowledge bases of commonsense assertions (CSKBs) is a long-standing challenge in AI research. From early expert-driven efforts like CYC and WordNet, significant advances were achieved via the crowdsourced OpenMind Commonsense project, which led to the crowdsourced ConceptNet KB. Several approaches have attempted to ...
In artificial intelligence (AI), an expert system is a computer system emulating the decision-making ability of a human expert. [1] Expert systems are designed to solve complex problems by reasoning through bodies of knowledge, represented mainly as if–then rules rather than through conventional procedural programming code. [2]
Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.
A blackboard-system application consists of three major components The software specialist modules, which are called knowledge sources (KSs).Like the human experts at a blackboard, each knowledge source provides specific expertise needed by the application.
Knowledge Acquisition and Documentation Structuring (KADS) is a structured way of developing knowledge-based systems (expert systems). It was developed at the University of Amsterdam as an alternative to an evolutionary approach and is now accepted as the European standard for knowledge based systems. [1] Its components are: