Search results
Results from the WOW.Com Content Network
The sign test is a special case of the binomial test where the probability of success under the null hypothesis is p=0.5. Thus, the sign test can be performed using the binomial test, which is provided in most statistical software programs. On-line calculators for the sign test can be founded by searching for "sign test calculator".
The procedure works by assessing whether the observed departure, measured by the test statistic, is larger than a value defined, so that the probability of occurrence of a more extreme value is small under the null hypothesis (usually in less than either 5% or 1% of similar data-sets in which the null hypothesis does hold).
Fisher's null hypothesis testing Neyman–Pearson decision theory 1 Set up a statistical null hypothesis. The null need not be a nil hypothesis (i.e., zero difference). Set up two statistical hypotheses, H1 and H2, and decide about α, β, and sample size before the experiment, based on subjective cost-benefit considerations.
In statistical hypothesis testing, a type I error, or a false positive, is the rejection of the null hypothesis when it is actually true. A type II error, or a false negative, is the failure to reject a null hypothesis that is actually false. [1] Type I error: an innocent person may be convicted. Type II error: a guilty person may be not convicted.
Statistical significance plays a pivotal role in statistical hypothesis testing. It is used to determine whether the null hypothesis should be rejected or retained. The null hypothesis is the hypothesis that no effect exists in the phenomenon being studied. [36]
In statistical hypothesis testing, the null distribution is the probability distribution of the test statistic when the null hypothesis is true. [1] For example, in an F-test, the null distribution is an F-distribution. [2] Null distribution is a tool scientists often use when conducting experiments.
Test statistic is a quantity derived from the sample for statistical hypothesis testing. [1] A hypothesis test is typically specified in terms of a test statistic, considered as a numerical summary of a data-set that reduces the data to one value that can be used to perform the hypothesis test.
In statistical hypothesis testing, a null result occurs when an experimental result is not significantly different from what is to be expected under the null hypothesis; its probability (under the null hypothesis) does not exceed the significance level, i.e., the threshold set prior to testing for rejection of the null hypothesis.