Search results
Results from the WOW.Com Content Network
A diagram showing the relationship for flow depth (y) and total Energy (E) for a given flow (Q). Note the location of critical flow, subcritical flow, and supercritical flow. The energy equation used for open channel flow computations is a simplification of the Bernoulli Equation (See Bernoulli Principle ), which takes into account pressure ...
The Pfafstetter Coding System is a hierarchical method of hydrologically coding river basins.It was developed by the Brazilian engineer Otto Pfafstetter [] in 1989. [1] It is designed such that topological information is embedded in the code, which makes it easy to determine whether an event in one river basin will affect another by direct examination of their codes.
The DSSAM Model is constructed to allow dynamic decay of most pollutants; for example, total nitrogen and phosphorus are allowed to be consumed by benthic algae in each time step, and the algal communities are given a separate population dynamic in each river reach (e.g. based upon river temperature).
Example flow net 2, click to view full-size. The second flow net pictured here (modified from Ferris, et al., 1962) shows a flow net being used to analyze map-view flow (invariant in the vertical direction), rather than a cross-section. Note that this problem has symmetry, and only the left or right portions of it needed to have been done.
Stream power, originally derived by R. A. Bagnold in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. [1] Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the ...
[1] [2] Plotting the position of an individual parcel through time gives the pathline of the parcel. This can be visualized as sitting in a boat and drifting down a river. The Eulerian specification of the flow field is a way of looking at fluid motion that focuses on specific locations in the space through which the fluid flows as time passes.
It also determines how much work the channel can do, for example, in moving sediment. All else equal, a river with a larger hydraulic radius will have a higher flow velocity, and also a larger cross sectional area through which that faster water can travel. This means the greater the hydraulic radius, the larger volume of water the channel can ...
The dimensionless Shields Diagram, in combination with the Shields formula is now unanimously accepted for initiation of sediment motion in rivers. Much work was done on river sediment transport formulae in the second half of the 20th century and that work should be used preferably to Hjulström's curve. [3]