Search results
Results from the WOW.Com Content Network
In mathematics, specifically in elementary arithmetic and elementary algebra, given an equation between two fractions or rational expressions, one can cross-multiply to simplify the equation or determine the value of a variable.
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
The percent value can also be found by multiplying first instead of later, so in this example, the 50 would be multiplied by 100 to give 5,000, and this result would be divided by 1,250 to give 4%. To calculate a percentage of a percentage, convert both percentages to fractions of 100, or to decimals, and multiply them. For example, 50% of 40% is:
Multiply both sides by the power of 10 (in this case 10 3) that is the same as the number of places that repeat: 10,000,000x = 1,523,987. 987; Subtract the two equations from each other (if a = b and c = d, then a − c = b − d): 10,000,000x − 10,000x = 1,523,987. 987 − 1,523. 987; Continue the subtraction operation to clear the repeating ...
In mathematics, ancient Egyptian multiplication (also known as Egyptian multiplication, Ethiopian multiplication, Russian multiplication, or peasant multiplication), one of two multiplication methods used by scribes, is a systematic method for multiplying two numbers that does not require the multiplication table, only the ability to multiply and divide by 2, and to add.
For instance, the product of three factors of two (2×2×2) is "two raised to the third power", and is denoted by 2 3, a two with a superscript three. In this example, the number two is the base, and three is the exponent. [26] In general, the exponent (or superscript) indicates how many times the base appears in the expression, so that the ...
To multiply two numbers with n digits using this method, one needs about n 2 operations. ... 30 4 10 300 40 3 90 12 followed by addition to obtain 442, either in a ...
Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5. As you would start on the number you are multiplying, when you multiply by 0, you stay on 0 (0 is external and so the arrows have no effect on 0, otherwise 0 is used as a link to create a perpetual cycle).