enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    The algebra of observables in quantum mechanics is naturally an algebra of operators defined on a Hilbert space, according to Werner Heisenberg's matrix mechanics formulation of quantum theory. [25] Von Neumann began investigating operator algebras in the 1930s, as rings of operators on a Hilbert space.

  3. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    A quantum description normally consists of a Hilbert space of states, observables are self-adjoint operators on the space of states, time evolution is given by a one-parameter group of unitary transformations on the Hilbert space of states, and physical symmetries are realized by unitary transformations.

  4. Dirac–von Neumann axioms - Wikipedia

    en.wikipedia.org/wiki/Dirac–von_Neumann_axioms

    In mathematical physics, the Dirac–von Neumann axioms give a mathematical formulation of quantum mechanics in terms of operators on a Hilbert space. They were introduced by Paul Dirac in 1930 and John von Neumann in 1932.

  5. Two-state quantum system - Wikipedia

    en.wikipedia.org/wiki/Two-state_quantum_system

    In quantum mechanics, a two-state system (also known as a two-level system) is a quantum system that can exist in any quantum superposition of two independent (physically distinguishable) quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent ...

  6. Complete set of commuting observables - Wikipedia

    en.wikipedia.org/wiki/Complete_set_of_commuting...

    In quantum mechanics, a complete set of commuting observables (CSCO) is a set of commuting operators whose common eigenvectors can be used as a basis to express any quantum state. In the case of operators with discrete spectra, a CSCO is a set of commuting observables whose simultaneous eigenspaces span the Hilbert space and are linearly ...

  7. Quantum configuration space - Wikipedia

    en.wikipedia.org/wiki/Quantum_configuration_space

    In quantum field theory, it is expected that the Hilbert space is also the space on the configuration space of the field, which is infinite dimensional, with respect to some Borel measure naturally defined. However, it is often hard to define a concrete Borel measure on the classical configuration space, since the integral theory on infinite ...

  8. Bra–ket notation - Wikipedia

    en.wikipedia.org/wiki/Bra–ket_notation

    The mathematical structure of quantum mechanics is based in large part on linear algebra: Wave functions and other quantum states can be represented as vectors in a complex Hilbert space. (The exact structure of this Hilbert space depends on the situation.) In bra–ket notation, for example, an electron might be in the "state" |ψ .

  9. Rigged Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Rigged_Hilbert_space

    A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map i is continuous. Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}