enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Signed graph - Wikipedia

    en.wikipedia.org/wiki/Signed_graph

    A signed graph is the special kind of gain graph in which the gain group has order 2. The pair (G, B(Σ)) determined by a signed graph Σ is a special kind of biased graph. The sign group has the special property, not shared by larger gain groups, that the edge signs are determined up to switching by the set B(Σ) of balanced cycles. [19]

  3. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    The 1980 monograph Spectra of Graphs [16] by Cvetković, Doob, and Sachs summarised nearly all research to date in the area. In 1988 it was updated by the survey Recent Results in the Theory of Graph Spectra. [17] The 3rd edition of Spectra of Graphs (1995) contains a summary of the further recent contributions to the subject. [15]

  4. Spectral geometry - Wikipedia

    en.wikipedia.org/wiki/Spectral_geometry

    Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...

  5. Hofstadter's butterfly - Wikipedia

    en.wikipedia.org/wiki/Hofstadter's_butterfly

    In condensed matter physics, Hofstadter's butterfly is a graph of the spectral properties of non-interacting two-dimensional electrons in a perpendicular magnetic field in a lattice. The fractal, self-similar nature of the spectrum was discovered in the 1976 Ph.D. work of Douglas Hofstadter [ 1 ] and is one of the early examples of modern ...

  6. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  7. Spectral shape analysis - Wikipedia

    en.wikipedia.org/wiki/Spectral_shape_analysis

    Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.

  8. Spectrogram - Wikipedia

    en.wikipedia.org/wiki/Spectrogram

    Spectrograms of light may be created directly using an optical spectrometer over time.. Spectrograms may be created from a time-domain signal in one of two ways: approximated as a filterbank that results from a series of band-pass filters (this was the only way before the advent of modern digital signal processing), or calculated from the time signal using the Fourier transform.

  9. Get your free daily horoscope, and see how it can inform your day through predictions and advice for health, body, money, work, and love.