enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Underfitting is the inverse of overfitting, meaning that the statistical model or machine learning algorithm is too simplistic to accurately capture the patterns in the data. A sign of underfitting is that there is a high bias and low variance detected in the current model or algorithm used (the inverse of overfitting: low bias and high variance).

  3. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    High-variance learning methods may be able to represent their training set well but are at risk of overfitting to noisy or unrepresentative training data. In contrast, algorithms with high bias typically produce simpler models that may fail to capture important regularities (i.e. underfit) in the data.

  4. Double descent - Wikipedia

    en.wikipedia.org/wiki/Double_descent

    Outline of machine learning; ... This phenomenon has been considered surprising, as it contradicts assumptions about overfitting in classical machine learning. [3]

  5. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of ... that disentangles the underlying factors of variation that explain the observed data. ... be an example of overfitting a ...

  7. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    This image represents an example of overfitting in machine learning. The red dots represent training set data. The green line represents the true functional relationship, while the blue line shows the learned function, which has been overfitted to the training set data. In machine learning problems, a major problem that arises is that of ...

  8. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    In machine learning, early stopping is a form of regularization used to avoid overfitting when training a model with an iterative method, such as gradient descent. Such methods update the model to make it better fit the training data with each iteration.

  9. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Keeping a function simple to avoid overfitting may introduce a bias in the resulting predictions, while allowing it to be more complex leads to overfitting and a higher variance in the predictions. It is impossible to minimize both simultaneously.