enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heliospheric current sheet - Wikipedia

    en.wikipedia.org/wiki/Heliospheric_current_sheet

    The heliospheric current sheet, or interplanetary current sheet, is a surface separating regions of the heliosphere where the interplanetary magnetic field points toward and away from the Sun. [1] A small electrical current with a current density of about 10 −10 A /m 2 flows within this surface, forming a current sheet confined to this surface.

  3. Interplanetary magnetic field - Wikipedia

    en.wikipedia.org/wiki/Interplanetary_magnetic_field

    These two magnetic domains are separated by a current sheet (an electric current that is confined to a curved plane). This heliospheric current sheet has a shape similar to a twirled ballerina skirt , and changes in shape through the solar cycle as the Sun's magnetic field reverses about every 11 years.

  4. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The current 3-form can be integrated over a 3-dimensional space-time region. The physical interpretation of this integral is the charge in that region if it is spacelike, or the amount of charge that flows through a surface in a certain amount of time if that region is a spacelike surface cross a timelike interval.

  6. Sverdrup balance - Wikipedia

    en.wikipedia.org/wiki/Sverdrup_balance

    In words, this equation says that as a vertical column of water is squashed, it moves toward the Equator; as it is stretched, it moves toward the pole. Assuming, as did Sverdrup, that there is a level below which motion ceases, the vorticity equation can be integrated from this level to the base of the Ekman surface layer to obtain:

  7. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.

  8. Magnetic flux - Wikipedia

    en.wikipedia.org/wiki/Magnetic_flux

    The two equations for the EMF are, firstly, the work per unit charge done against the Lorentz force in moving a test charge around the (possibly moving) surface boundary ∂Σ and, secondly, as the change of magnetic flux through the open surface Σ. This equation is the principle behind an electrical generator.

  9. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.