enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    Custom Function @PowerMod() for FileMaker Pro (with 1024-bit RSA encryption example) Ruby's openssl package has the OpenSSL::BN#mod_exp method to perform modular exponentiation. The HP Prime Calculator has the CAS.powmod() function [permanent dead link ‍] to perform modular exponentiation. For a^b mod c, a can be no larger than 1 EE 12.

  3. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  4. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  5. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    This method is an efficient variant of the 2 k-ary method. For example, to calculate the exponent 398, which has binary expansion (110 001 110) 2, we take a window of length 3 using the 2 k-ary method algorithm and calculate 1, x 3, x 6, x 12, x 24, x 48, x 49, x 98, x 99, x 198, x 199, x 398.

  6. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    However, division can be expensive and, in cryptographic settings, might not be a constant-time instruction on some CPUs, subjecting the operation to a timing attack. Thus Barrett reduction approximates 1 / n {\displaystyle 1/n} with a value m / 2 k {\displaystyle m/2^{k}} because division by 2 k {\displaystyle 2^{k}} is just a right-shift, and ...

  7. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    In practice, R is always a power of two, since division by powers of two can be implemented by bit shifting. The need to convert a and b into Montgomery form and their product out of Montgomery form means that computing a single product by Montgomery multiplication is slower than the conventional or Barrett reduction algorithms.

  8. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    Horner's method is a fast, code-efficient method for multiplication and division of binary numbers on a microcontroller with no hardware multiplier. One of the binary numbers to be multiplied is represented as a trivial polynomial, where (using the above notation) a i = 1 {\displaystyle a_{i}=1} , and x = 2 {\displaystyle x=2} .

  9. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    For algorithms describing how to calculate the remainder, see division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder . [ 2 ] The integer a is either a multiple of d , or lies in the interval between consecutive multiples of d , namely, q⋅d and ( q + 1) d (for positive q ).