Search results
Results from the WOW.Com Content Network
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
In physics, transport phenomena are all irreversible processes of statistical nature stemming from the random continuous motion of molecules, mostly observed in fluids. Every aspect of transport phenomena is grounded in two primary concepts : the conservation laws, and the constitutive equations.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
This definition assumes that the effect of temperature can be ignored, and the body is homogeneous. This is the constitutive equation for a Cauchy-elastic material. Note that the function depends on the choice of reference configuration. Typically, the reference configuration is taken as the relaxed (zero-stress) configuration, but need not be.
Using the Maxwell equations, one can see that the electromagnetic stress–energy tensor (defined above) satisfies the following differential equation, relating it to the electromagnetic tensor and the current four-vector , + = or , + =, which expresses the conservation of linear momentum and energy by electromagnetic interactions.
Schematic diagram of Burgers material, Maxwell representation. Given that one Maxwell material has an elasticity and viscosity , and the other Maxwell material has an elasticity and viscosity , the Burgers model has the constitutive equation
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.