enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  3. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Linear regression finds application in a wide range of environmental science applications such as land use, [28] infectious diseases, [29] and air pollution. [30] For example, linear regression can be used to predict the changing effects of car pollution. [31]

  4. The Complete Guide to Trend-Following Indicators

    www.aol.com/news/complete-guide-trend-following...

    Linear Regression R2 – analyses the reliability of price vs regression prediction. Linear Regression Slope – determines the average rate of change when using regression analysis and compares ...

  5. Demand forecasting - Wikipedia

    en.wikipedia.org/wiki/Demand_forecasting

    The model was based on a linear regression model, and is used to measure linear trends based on seasonal cycles and their affects on demand i.e. the seasonal demand for a product based on sales in summer and winter. The linear regression model is described as: = + +

  6. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics is a set of business intelligence (BI) technologies that uncovers relationships and patterns within large volumes of data that can be used to predict behavior and events. Unlike other BI technologies, predictive analytics is forward-looking, using past events to anticipate the future. [3]

  7. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Deming regression (total least squares) also finds a line that fits a set of two-dimensional sample points, but (unlike ordinary least squares, least absolute deviations, and median slope regression) it is not really an instance of simple linear regression, because it does not separate the coordinates into one dependent and one independent ...

  8. Linear predictor function - Wikipedia

    en.wikipedia.org/wiki/Linear_predictor_function

    The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.

  9. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...