enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs.

  3. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is

  4. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory.

  5. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...

  6. Lyapunov exponent - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_exponent

    To introduce Lyapunov exponent consider a fundamental matrix () (e.g., for linearization along a stationary solution in a continuous system), the fundamental matrix is ⁡ (() |) consisting of the linearly-independent solutions of the first-order approximation of the system.

  7. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.

  8. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.

  9. Lyapunov–Malkin theorem - Wikipedia

    en.wikipedia.org/wiki/Lyapunov–Malkin_theorem

    The Lyapunov–Malkin theorem ... ) is a mathematical theorem detailing stability of nonlinear systems. [1] [2] Theorem ... is a matrix that represents the linear ...