enow.com Web Search

  1. Ads

    related to: parallel lines real life examples of obtuse angles shapes
  2. education.com has been visited by 100K+ users in the past month

    This site is a teacher's paradise! - The Bender Bunch

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

    • Guided Lessons

      Learn new concepts step-by-step

      with colorful guided lessons.

Search results

  1. Results from the WOW.Com Content Network
  2. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...

  3. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    An obtuse trapezoid on the other hand has one acute and one obtuse angle on each base. An isosceles trapezoid is a trapezoid where the base angles have the same measure. As a consequence the two legs are also of equal length and it has reflection symmetry .

  4. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    The summit angles of a Saccheri quadrilateral are acute if the geometry is hyperbolic, right angles if the geometry is Euclidean and obtuse angles if the geometry is elliptic. The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, equal to 180° if the geometry is Euclidean, and greater than 180 ...

  5. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...

  6. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).

  7. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Acute (a), obtuse (b), and straight (c) angles. The acute and obtuse angles are also known as oblique angles. Euclid defines a plane angle as the inclination to each other, in a plane, of two lines which meet each other, and do not lie straight with respect to each other. [ 43 ]

  8. List of two-dimensional geometric shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_two-dimensional...

    Obtuse triangle; Rational triangle; Heronian triangle. Pythagorean triangle; Isosceles heronian triangle; Primitive Heronian triangle; Right triangle. 30-60-90 triangle; Isosceles right triangle; Kepler triangle; Scalene triangle; Quadrilateral – 4 sides Cyclic quadrilateral; Kite. Rectangle; Rhomboid; Rhombus; Square (regular quadrilateral ...

  9. Elliptic geometry - Wikipedia

    en.wikipedia.org/wiki/Elliptic_geometry

    For example, the first and fourth of Euclid's postulates, that there is a unique line between any two points and that all right angles are equal, hold in elliptic geometry. Postulate 3, that one can construct a circle with any given center and radius, fails if "any radius" is taken to mean "any real number", but holds if it is taken to mean ...

  1. Ads

    related to: parallel lines real life examples of obtuse angles shapes