Search results
Results from the WOW.Com Content Network
Fuzzy clustering (also referred to as soft clustering or soft k-means) is a form of clustering in which each data point can belong to more than one cluster.. Clustering or cluster analysis involves assigning data points to clusters such that items in the same cluster are as similar as possible, while items belonging to different clusters are as dissimilar as possible.
Hard clustering: each object belongs to a cluster or not; Soft clustering (also: fuzzy clustering): each object belongs to each cluster to a certain degree (for example, a likelihood of belonging to the cluster) There are also finer distinctions possible, for example: Strict partitioning clustering: each object belongs to exactly one cluster
Various extensions to the DBSCAN algorithm have been proposed, including methods for parallelization, parameter estimation, and support for uncertain data. The basic idea has been extended to hierarchical clustering by the OPTICS algorithm. DBSCAN is also used as part of subspace clustering algorithms like PreDeCon and SUBCLU.
Hard clustering computes a hard assignment – each document is a member of exactly one cluster. The assignment of soft clustering algorithms is soft – a document's assignment is a distribution over all clusters. In a soft assignment, a document has fractional membership in several clusters. [1]: 499 Dimensionality reduction methods can be ...
In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]
Ordering points to identify the clustering structure (OPTICS) is an algorithm for finding density-based [1] clusters in spatial data. It was presented by Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel and Jörg Sander. [ 2 ]
If there are too many or too few clusters, as may occur when a poor choice of is used in the clustering algorithm (e.g., k-means), some of the clusters will typically display much narrower silhouettes than the rest. Thus silhouette plots and means may be used to determine the natural number of clusters within a dataset.