enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Event (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Event_(probability_theory)

    In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]

  3. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  4. Return period - Wikipedia

    en.wikipedia.org/wiki/Return_period

    Note that for any event with return period , the probability of exceedance within an interval equal to the return period (i.e. =) is independent from the return period and it is equal to ⁡ %. This means, for example, that there is a 63.2% probability of a flood larger than the 50-year return flood to occur within any period of 50 year.

  5. Conditional probability - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability

    Given two events A and B from the sigma-field of a probability space, with the unconditional probability of B being greater than zero (i.e., P(B) > 0), the conditional probability of A given B (()) is the probability of A occurring if B has or is assumed to have happened. [5]

  6. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.

  7. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty. When doing calculations using the outcomes of an experiment, it is necessary that all those elementary events have a number assigned to them.

  8. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    In probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events , hence the name.

  9. Birthday problem - Wikipedia

    en.wikipedia.org/wiki/Birthday_problem

    Let these events be called Event 2, Event 3, and so on. Event 1 is the event of person 1 having a birthday, which occurs with probability 1. This conjunction of events may be computed using conditional probability: the probability of Event 2 is ⁠ 364 / 365 ⁠, as person 2 may have