Search results
Results from the WOW.Com Content Network
[1]: 139 The base and coherent derived units of the SI together form a coherent system of units (the set of coherent SI units). A useful property of a coherent system is that when the numerical values of physical quantities are expressed in terms of the units of the system, then the equations between the numerical values have exactly the same ...
"The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1.380 649 × 10 −23 when expressed in the unit J K −1, which is equal to kg m 2 s −2 K −1, where the kilogram, metre and second are defined in terms of h, c and ∆ν Cs." [1]
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured.
The siemens (symbol: S) is the unit of electric conductance, electric susceptance, and electric admittance in the International System of Units (SI). Conductance, susceptance, and admittance are the reciprocals of resistance, reactance, and impedance respectively; hence one siemens is equal to the reciprocal of one ohm (Ω −1) and is also referred to as the mho.
SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian heat capacity ratio
SI base unit Dimension Comments Amount of substance: n: The quantity proportional to the number of particles in a sample, with the Avogadro constant as the proportionality constant: mole (mol) N: extensive, scalar Length: l: The one-dimensional extent of an object metre (m) L: extensive: Time: t: The duration of an event: second (s) T: scalar ...
The mole is widely used in chemistry as a convenient way to express amounts of reactants and amounts of products of chemical reactions. For example, the chemical equation 2 H 2 + O 2 → 2 H 2 O can be interpreted to mean that for each 2 mol molecular hydrogen (H 2) and 1 mol molecular oxygen (O 2) that react, 2 mol of water (H 2 O) form.
[a] This system underlies the International System of Units (SI) [b] but does not itself determine the units of measurement used for the quantities. The system is formally described in a multi-part ISO standard ISO/IEC 80000 (which also defines many other quantities used in science and technology), first completed in 2009 and subsequently ...