Search results
Results from the WOW.Com Content Network
Microfluidic Sanger sequencing is a lab-on-a-chip application for DNA sequencing, in which the Sanger sequencing steps (thermal cycling, sample purification, and capillary electrophoresis) are integrated on a wafer-scale chip using nanoliter-scale sample volumes. This technology generates long and accurate sequence reads, while obviating many ...
The AB370A was able to sequence 96 samples simultaneously, 500 kilobases per day, and reaching read lengths up to 600 bases. This was the beginning of the "first generation" of DNA sequencers, [2] [3] which implemented Sanger sequencing, fluorescent dideoxy nucleotides and polyacrylamide gel sandwiched between glass plates - slab gels. The next ...
The method used in this study, which is called the “Sanger method” or Sanger sequencing, was a milestone in sequencing long strand molecules such as DNA. This method was eventually used in the human genome project. [5] According to Michael Levitt, sequence analysis was born in the period from 1969 to 1977. [6]
DNA sequencing is the process of determining the nucleotide order of a given DNA fragment. So far, most DNA sequencing has been performed using the chain termination method developed by Frederick Sanger. This technique uses sequence-specific termination of a DNA synthesis reaction using modified nucleotide substrates.
Primer walking is a method to determine the sequence of DNA up to the 1.3–7.0 kb range whereas chromosome walking is used to produce the clones of already known sequences of the gene. [2] Too long fragments cannot be sequenced in a single sequence read using the chain termination method. This method works by dividing the long sequence into ...
Frederick Sanger. In 1945, Frederick Sanger described its use for determining the N-terminal amino acid in polypeptide chains, in particular insulin. [4] Sanger's initial results suggested that insulin was a smaller molecule than previously estimated (molecular weight 12,000), and that it consisted of four chains (two ending in glycine and two ending in phenylalanine), with the chains cross ...
In bioinformatics, sequence assembly refers to aligning and merging fragments from a longer DNA sequence in order to reconstruct the original sequence. [1] This is needed as DNA sequencing technology might not be able to 'read' whole genomes in one go, but rather reads small pieces of between 20 and 30,000 bases, depending on the technology used. [1]
Using genome skimming, the sequencing of the entire plastid genome, or plastome, can be done at a fraction of the cost and time required for typical sequencing approaches like Sanger sequencing. [3] Plastomes have been suggested as a method to replace traditional DNA barcodes in plants, [3] such as the rbcL and matK barcode genes.