enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.

  3. Davenport–Schinzel Sequences and Their Geometric Applications

    en.wikipedia.org/wiki/Davenport–Schinzel...

    Davenport–Schinzel sequences are named after Harold Davenport and Andrzej Schinzel, who applied them to certain problems in the theory of differential equations. [1] They are finite sequences of symbols from a given alphabet, constrained by forbidding pairs of symbols from appearing in alternation more than a given number of times (regardless of what other symbols might separate them).

  4. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  5. List of interactive geometry software - Wikipedia

    en.wikipedia.org/wiki/List_of_interactive...

    Interactive geometry software (IGS) or dynamic geometry environments (DGEs) are computer programs which allow one to create and then manipulate geometric constructions, primarily in plane geometry. In most IGS, one starts construction by putting a few points and using them to define new objects such as lines , circles or other points.

  6. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .

  7. JTS Topology Suite - Wikipedia

    en.wikipedia.org/wiki/JTS_Topology_Suite

    GEOS links and ships internally in popular applications listed below; and, by delineating and implementing standards-based geometry classes available to GDAL, which in turn is a widely supported inner-engine in GIS, GEOS becomes a core geometry implementation in even more applications: GDAL - OGR - raster and vector data munging

  8. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    When every term of a series is a non-negative real number, for instance when the terms are the absolute values of another series of real numbers or complex numbers, the sequence of partial sums is non-decreasing. Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound ...

  9. Geometric modeling - Wikipedia

    en.wikipedia.org/wiki/Geometric_modeling

    Geometric modeling is a branch of applied mathematics and computational geometry that studies methods and algorithms for the mathematical description of shapes. The shapes studied in geometric modeling are mostly two- or three- dimensional ( solid figures ), although many of its tools and principles can be applied to sets of any finite dimension.