Search results
Results from the WOW.Com Content Network
Deligne's contribution was to supply the estimate of the eigenvalues of the Frobenius endomorphism, considered the geometric analogue of the Riemann hypothesis. It also led to a proof of the Lefschetz hyperplane theorem and the old and new estimates of the classical exponential sums, among other applications.
The proof of the Riemann hypothesis for varieties over finite fields by Deligne (1974) is possibly the single strongest theoretical reason in favor of the Riemann hypothesis. This provides some evidence for the more general conjecture that all zeta functions associated with automorphic forms satisfy a Riemann hypothesis, which includes the ...
However, Grothendieck's standard conjectures remain open (except for the hard Lefschetz theorem, which was proved by Deligne by extending his work on the Weil conjectures), and the analogue of the Riemann hypothesis was proved by Deligne , using the étale cohomology theory but circumventing the use of standard conjectures by an ingenious argument.
In mathematics, the Riemann hypothesis, proposed by Bernhard Riemann , is a conjecture that the non-trivial zeros of the Riemann zeta function all have real part 1/2. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields .
The extended Riemann hypothesis asserts that for every number field K and every complex number s with ζ K (s) = 0: if the real part of s is between 0 and 1, then it is in fact 1/2. The ordinary Riemann hypothesis follows from the extended one if one takes the number field to be Q, with ring of integers Z.
Moreover, as he pointed out, the standard conjectures also imply the hardest part of the Weil conjectures, namely the "Riemann hypothesis" conjecture that remained open at the end of the 1960s and was proved later by Pierre Deligne; for details on the link between Weil and standard conjectures, see Kleiman (1968).
Hasse (1936) discovered supersingular elliptic curves during his work on the Riemann hypothesis for elliptic curves by observing that positive characteristic elliptic curves could have endomorphism rings of unusually large rank 4, and Deuring (1941) developed their basic theory.
These results also follow from the Weil conjectures, except for the case k = 1, where it is a result of Deligne & Serre (1974). The Ramanujan–Petersson conjecture for Maass forms is still open (as of 2022) because Deligne's method, which works well in the holomorphic case, does not work in the real analytic case.