enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Betrothed numbers - Wikipedia

    en.wikipedia.org/wiki/Betrothed_numbers

    They are generalizations of the concepts of betrothed numbers and quasiperfect numbers. The first quasi-sociable sequences, or quasi-sociable chains, were discovered by Mitchell Dickerman in 1997: 1215571544 = 2^3*11*13813313; 1270824975 = 3^2*5^2*7*19*42467; 1467511664 = 2^4*19*599*8059; 1530808335 = 3^3*5*7*1619903; 1579407344 = 2^4*31^2*59*1741

  3. Sociable number - Wikipedia

    en.wikipedia.org/wiki/Sociable_number

    The period of the sequence, or order of the set of sociable numbers, is the number of numbers in this cycle. If the period of the sequence is 1, the number is a sociable number of order 1, or a perfect number—for example, the proper divisors of 6 are 1, 2, and 3, whose sum is again 6. A pair of amicable numbers is a set of sociable numbers of ...

  4. Fortunate number - Wikipedia

    en.wikipedia.org/wiki/Fortunate_number

    Adding 2 to that gives another even number, while adding 3 would give another multiple of 3. One would similarly rule out the integers up to 18. Adding 19, however, gives 510529, which is prime. Hence 19 is a Fortunate number. The Fortunate number for p n # is always above p n and all its divisors are larger than p n. This is because p n #, and ...

  5. Amicable numbers - Wikipedia

    en.wikipedia.org/wiki/Amicable_numbers

    where n > 1 is an integer and p, q, r are prime numbers, then 2 n × p × q and 2 n × r are a pair of amicable numbers. This formula gives the pairs (220, 284) for n = 2, (17296, 18416) for n = 4, and (9363584, 9437056) for n = 7, but no other such pairs are known. Numbers of the form 3 × 2 n − 1 are known as Thabit numbers.

  6. Aliquot sequence - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sequence

    The aliquot sequence starting with a positive integer k can be defined formally in terms of the sum-of-divisors function σ 1 or the aliquot sum function s in the following way: [1] = = = > = = = If the s n-1 = 0 condition is added, then the terms after 0 are all 0, and all aliquot sequences would be infinite, and we can conjecture that all aliquot sequences are convergent, the limit of these ...

  7. Narcissistic number - Wikipedia

    en.wikipedia.org/wiki/Narcissistic_number

    In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.

  8. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively. A related concept is that of a largely composite number , a positive integer that has at least as many divisors as all smaller positive integers.

  9. Pell number - Wikipedia

    en.wikipedia.org/wiki/Pell_number

    In words: the first two numbers in the sequence are both 2, and each successive number is formed by adding twice the previous Pell–Lucas number to the Pell–Lucas number before that, or equivalently, by adding the next Pell number to the previous Pell number: thus, 82 is the companion to 29, and 82 = 2 × 34 + 14 = 70 + 12.