enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...

  3. Roth's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Roth's_Theorem_on...

    Roth's theorem on arithmetic progressions (infinite version): A subset of the natural numbers with positive upper density contains a 3-term arithmetic progression. An alternate, more qualitative, formulation of the theorem is concerned with the maximum size of a Salem–Spencer set which is a subset of [ N ] = { 1 , … , N } {\displaystyle [N ...

  4. Dirichlet's theorem on arithmetic progressions - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_theorem_on...

    For example, 6n + 1 produces the same primes as 3n + 1, while 6n + 5 produces the same as 3n + 2 except for the only even prime 2. The following table lists several arithmetic progressions with infinitely many primes and the first few ones in each of them.

  5. Primes in arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Primes_in_arithmetic...

    In number theory, primes in arithmetic progression are any sequence of at least three prime numbers that are consecutive terms in an arithmetic progression. An example is the sequence of primes (3, 7, 11), which is given by a n = 3 + 4 n {\displaystyle a_{n}=3+4n} for 0 ≤ n ≤ 2 {\displaystyle 0\leq n\leq 2} .

  6. Roth's theorem - Wikipedia

    en.wikipedia.org/wiki/Roth's_theorem

    The proof technique involves constructing an auxiliary multivariate polynomial in an arbitrarily large number of variables depending upon , leading to a contradiction in the presence of too many good approximations. More specifically, one finds a certain number of rational approximations to the irrational algebraic number in question, and then ...

  7. Fermat's right triangle theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_right_triangle...

    More abstractly, as a result about Diophantine equations (integer or rational-number solutions to polynomial equations), it is equivalent to the statements that: If three square numbers form an arithmetic progression, then the gap between consecutive numbers in the progression (called a congruum) cannot itself be square.

  8. Second-order arithmetic - Wikipedia

    en.wikipedia.org/wiki/Second-order_arithmetic

    The formal theory of second-order arithmetic (in the language of second-order arithmetic) consists of the basic axioms, the comprehension axiom for every formula φ (arithmetic or otherwise), and the second-order induction axiom. This theory is sometimes called full second-order arithmetic to distinguish it from its subsystems, defined below ...

  9. Congruum - Wikipedia

    en.wikipedia.org/wiki/Congruum

    When this equation is satisfied, both sides of the equation equal the congruum. Fibonacci solved the congruum problem by finding a parameterized formula for generating all congrua, together with their associated arithmetic progressions. According to this formula, each congruum is four times the area of a Pythagorean triangle.