enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  3. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.

  4. Four-current - Wikipedia

    en.wikipedia.org/wiki/Four-current

    In special and general relativity, the four-current (technically the four-current density) [1] is the four-dimensional analogue of the current density, with units of charge per unit time per unit area. Also known as vector current, it is used in the geometric context of four-dimensional spacetime, rather than separating time from three ...

  5. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    m/s 5: L T −5: vector Current density: J →: Electric current per unit cross-section area A/m 2: L −2 I: conserved, intensive, vector Electric dipole moment: p: Measure of the separation of equal and opposite electric charges C⋅m L T I: vector Electric displacement field: D →: Strength of the electric displacement C/m 2: L −2 T I ...

  6. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    for virtually any well-behaved function g of dimensionless argument φ, where ω is the angular frequency (in radians per second), and k = (k x, k y, k z) is the wave vector (in radians per meter). Although the function g can be and often is a monochromatic sine wave , it does not have to be sinusoidal, or even periodic.

  7. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Canonical quantization of the electromagnetic fields proceeds by elevating the scalar and vector potentials; φ(x), A(x), from fields to field operators. Substituting 1/ c 2 = ε 0 μ 0 into the previous Lorenz gauge equations gives:

  8. Sources and sinks - Wikipedia

    en.wikipedia.org/wiki/Sources_and_sinks

    where this time is the charge density, is the current density vector, and is the current source-sink term. The current source and current sinks are where the current density emerges σ > 0 {\displaystyle \sigma >0} or vanishes σ < 0 {\displaystyle \sigma <0} , respectively (for example, the source and sink can represent the two poles of an ...

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The net electric current I is the surface integral of the electric current density J passing through Σ: =, where dS denotes the differential vector element of surface area S, normal to surface Σ. (Vector area is sometimes denoted by A rather than S , but this conflicts with the notation for magnetic vector potential ).