Search results
Results from the WOW.Com Content Network
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.
The following are also concurrent: (1) the circle that is centered at the hyperbola's center and that passes through the hyperbola's vertices; (2) either directrix; and (3) either of the asymptotes. [22] Since both the transverse axis and the conjugate axis are axes of symmetry, the symmetry group of a hyperbola is the Klein four-group.
The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.
The semi-minor axis (minor semiaxis) of an ellipse or hyperbola is a line segment that is at right angles with the semi-major axis and has one end at the center of the conic section. For the special case of a circle, the lengths of the semi-axes are both equal to the radius of the circle.
Starting from (1,1) the hyperbolic sector of unit area ends at (e, 1/e), where e is 2.71828…, according to the development of Leonhard Euler in Introduction to the Analysis of the Infinite (1748). Taking (e, 1/e) as the vertex of rectangle of unit area, and applying again the squeeze that made it from the unit square, yields ( e 2 , e − 2 ...
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
The area of a hyperbolic triangle is given by its defect in radians multiplied by R 2, which is also true for all convex hyperbolic polygons. [2] Therefore all hyperbolic triangles have an area less than or equal to R 2 π. The area of a hyperbolic ideal triangle in which all three angles are 0° is equal to this maximum.