Search results
Results from the WOW.Com Content Network
One way to visualize the similarity between two protein or nucleic acid sequences is to use a similarity matrix, known as a dot plot. These were introduced by Gibbs and McIntyre in 1970 [1] and are two-dimensional matrices that have the sequences of the proteins being compared along the vertical and horizontal axes.
An illustration of a Manhattan plot depicting several strongly associated risk loci. A Manhattan plot is a type of plot, usually used to display data with a large number of data-points, many of non-zero amplitude, and with a distribution of higher-magnitude values.
The plot visualizes the differences between measurements taken in two samples, by transforming the data onto M (log ratio) and A (mean average) scales, then plotting these values. Though originally applied in the context of two channel DNA microarray gene expression data, MA plots are also used to visualise high-throughput sequencing analysis.
Example of an approximately 40,000 probe spotted oligo microarray with enlarged inset to show detail. Microarray analysis techniques are used in interpreting the data generated from experiments on DNA (Gene chip analysis), RNA, and protein microarrays, which allow researchers to investigate the expression state of a large number of genes – in many cases, an organism's entire genome – in a ...
Cytogenetics is a branch of genetics that is concerned with the study of the structure and function of the cell, especially the chromosomes. Polymerase chain reaction studies the amplification of DNA. Because of the close analysis of chromosomes in cytogenetics, abnormalities are more readily seen and diagnosed.
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
In molecular biology and genetics, DNA annotation or genome annotation is the process of describing the structure and function of the components of a genome, [2] by analyzing and interpreting them in order to extract their biological significance and understand the biological processes in which they participate. [3]
Rapid DNA is a "swab in-profile out" technology that completely automates the entire DNA extraction, amplification, and analysis process. Rapid DNA instruments are able to go from a swab to a DNA profile in as little as 90 minutes and eliminates the need for trained scientists to perform the process.