enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    A nozzle for a supersonic flow must increase in area in the flow direction, and a diffuser must decrease in area, opposite to a nozzle and diffuser for a subsonic flow. So, for a supersonic flow to develop from a reservoir where the velocity is zero, the subsonic flow must first accelerate through a converging area to a throat, followed by ...

  3. de Laval nozzle - Wikipedia

    en.wikipedia.org/wiki/De_Laval_nozzle

    A de Laval nozzle (or convergent-divergent nozzle, CD nozzle or con-di nozzle) is a tube which is pinched in the middle, with a rapid convergence and gradual divergence. It is used to accelerate a compressible fluid to supersonic speeds in the axial (thrust) direction, by converting the thermal energy of the flow into kinetic energy .

  4. K-factor (fire protection) - Wikipedia

    en.wikipedia.org/wiki/K-factor_(fire_protection)

    In fire protection engineering, the K-factor formula is used to calculate the volumetric flow rate from a nozzle. Spray nozzles can for example be fire sprinklers or water mist nozzles, hose reel nozzles, water monitors and deluge fire system nozzles.

  5. Discharge coefficient - Wikipedia

    en.wikipedia.org/wiki/Discharge_coefficient

    In a nozzle or other constriction, the discharge coefficient (also known as coefficient of discharge or efflux coefficient) is the ratio of the actual discharge to the ideal discharge, [1] i.e., the ratio of the mass flow rate at the discharge end of the nozzle to that of an ideal nozzle which expands an identical working fluid from the same initial conditions to the same exit pressures.

  6. Hydraulic calculation - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_calculation

    The hydraulic calculation procedure is defined in the applicable reference model codes such as that published by the US-based National Fire Protection Association (NFPA), [2] or the EN 12845 standard, Fixed firefighting system – Automatic sprinkler systems – Design, installation and maintenance.

  7. Rocket engine nozzle - Wikipedia

    en.wikipedia.org/wiki/Rocket_engine_nozzle

    The gas flow rate is constant (i.e., steady) during the period of the propellant burn. The gas flow is non-turbulent and axisymmetric from gas inlet to exhaust gas exit (i.e., along the nozzle's axis of symmetry). The flow is compressible as the fluid is a gas. As the combustion gas enters the rocket nozzle, it is traveling at subsonic velocities.

  8. Fanno flow - Wikipedia

    en.wikipedia.org/wiki/Fanno_flow

    In a nozzle, the converging or diverging area is modeled with isentropic flow, while the constant area section afterwards is modeled with Fanno flow. For given upstream conditions at point 1 as shown in Figures 3 and 4, calculations can be made to determine the nozzle exit Mach number and the location of a normal shock in the constant area duct.

  9. Stodola's cone law - Wikipedia

    en.wikipedia.org/wiki/Stodola's_cone_law

    The Law of the Ellipse, or Stodola's cone law, [1] [2] is a method for calculating highly nonlinear dependence of extraction pressures with a flow for multistage turbine with high backpressure, when the turbine nozzles are not choked. [3] It is important in turbine off-design calculations.