Search results
Results from the WOW.Com Content Network
In statistics, McKay's approximation of the coefficient of variation is a statistic based on a sample from a normally distributed population. It was introduced in 1932 by A. T. McKay. [1] Statistical methods for the coefficient of variation often utilizes McKay's approximation. [2] [3] [4] [5]
The data set [90, 100, 110] has more variability. Its standard deviation is 10 and its average is 100, giving the coefficient of variation as 10 / 100 = 0.1; The data set [1, 5, 6, 8, 10, 40, 65, 88] has still more variability. Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18
Download as PDF; Printable version; In other projects ... McKay's approximation for the coefficient of variation; Mean absolute difference; Mean absolute error;
Download as PDF; Printable version; ... Coefficient of determination; Coefficient of variation; Concordance correlation coefficient;
Variation varies between 0 and 1. Variation is 0 if and only if all cases belong to a single category. Variation is 1 if and only if cases are evenly divided across all categories. [1] In particular, the value of these standardized indices does not depend on the number of categories or number of samples.
Coefficient of colligation - Yule's Y; Coefficient of consistency; Coefficient of raw agreement; Conger's Kappa; Contingency coefficient – Pearson's C; Cramér's V; Dice's coefficient; Fleiss' kappa; Goodman and Kruskal's lambda; Guilford’s G; Gwet's AC1; Hanssen–Kuipers discriminant; Heidke skill score; Jaccard index; Janson and Vegelius ...
In probability theory and statistics, the index of dispersion, [1] dispersion index, coefficient of dispersion, relative variance, or variance-to-mean ratio (VMR), like the coefficient of variation, is a normalized measure of the dispersion of a probability distribution: it is a measure used to quantify whether a set of observed occurrences are clustered or dispersed compared to a standard ...
In statistics, the quartile coefficient of dispersion (QCD) is a descriptive statistic which measures dispersion and is used to make comparisons within and between data sets. Since it is based on quantile information, it is less sensitive to outliers than measures such as the coefficient of variation .