Search results
Results from the WOW.Com Content Network
The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).
It is used to solve systems of linear differential equations. In the theory of Lie groups, the matrix exponential gives the exponential map between a matrix Lie algebra and the corresponding Lie group. Let X be an n × n real or complex matrix. The exponential of X, denoted by e X or exp(X), is the n × n matrix given by the power series = =!
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula = , which ...
So, if the three non-monic coefficients of the depressed quartic equation, + + + =, in terms of the five coefficients of the general quartic equation are given as follows: =, = + and = +, then the criteria to identify a priori each case of quartic equations with multiple roots and their respective solutions are shown below.
The nested radicals in this solution cannot in general be simplified unless the cubic equation has at least one rational solution. Indeed, if the cubic has three irrational but real solutions, we have the casus irreducibilis, in which all three real solutions are written in terms of cube roots of complex numbers. On the other hand, consider the ...
Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.
Generating functions are often expressed in closed form (rather than as a series), by some expression involving operations on the formal series. There are various types of generating functions, including ordinary generating functions, exponential generating functions, Lambert series, Bell series, and Dirichlet series. Every sequence in ...
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.