enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Liquid metal embrittlement - Wikipedia

    en.wikipedia.org/wiki/Liquid_metal_embrittlement

    The chemical compositions of the solid and liquid metals affect the severity of embrittlement. The addition of third elements to the liquid metal may increase or decrease the embrittlement and alter the temperature region over which embrittlement is seen. Metal combinations which form intermetallic compounds do not cause LME.

  3. Embrittlement - Wikipedia

    en.wikipedia.org/wiki/Embrittlement

    Liquid metal embrittlement (LME) is the embrittlement caused by liquid metals. Metal-induced embrittlement (MIE) is the embrittlement caused by diffusion of atoms of metal, either solid or liquid, into the material. For example, cadmium coating on high-strength steel, which was originally done to prevent corrosion.

  4. Metal-induced embrittlement - Wikipedia

    en.wikipedia.org/wiki/Metal-induced_embrittlement

    Metal-induced embrittlement (MIE) is the embrittlement caused by diffusion of metal, either solid or liquid, into the base material. Metal induced embrittlement occurs when metals are in contact with low-melting point metals while under tensile stress. The embrittler can be either solid or liquid (liquid metal embrittlement).

  5. Environmental stress fracture - Wikipedia

    en.wikipedia.org/wiki/Environmental_stress_fracture

    Corrosion during service in moist environments generates hydrogen, part of which may enter the metal as atomic hydrogen (H •) and cause embrittlement. Presence of a tensile stress, either inherent or externally applied, is necessary for metals to be damaged. As in the case of stress corrosion cracking, hydrogen embrittlement may also lead to ...

  6. Corrosion fatigue - Wikipedia

    en.wikipedia.org/wiki/Corrosion_fatigue

    Corrosion fatigue is fatigue in a corrosive environment. It is the mechanical degradation of a material under the joint action of corrosion and cyclic loading. Nearly all engineering structures experience some form of alternating stress, and are exposed to harmful environments during their service life.

  7. Stress corrosion cracking - Wikipedia

    en.wikipedia.org/wiki/Stress_corrosion_cracking

    Stress corrosion cracking (SCC) is the growth of crack formation in a corrosive environment. It can lead to unexpected and sudden failure of normally ductile metal alloys subjected to a tensile stress, especially at elevated temperature.

  8. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    Fatigue has traditionally been associated with the failure of metal components which led to the term metal fatigue. In the nineteenth century, the sudden failing of metal railway axles was thought to be caused by the metal crystallising because of the brittle appearance of the fracture surface, but this has since been disproved. [ 1 ]

  9. 475 °C embrittlement - Wikipedia

    en.wikipedia.org/wiki/475_°C_embrittlement

    However, duplex stainless steel can be susceptible to a phenomenon known as 475 °C (887 °F) embrittlement or duplex stainless steel age hardening, which is a type of aging process that causes loss of plasticity in duplex stainless steel when it is heated in the range of 250 to 550 °C (480 to 1,020 °F).