enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  3. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    These added costs are used instead of the strict inequality constraints in the optimization. In practice, this relaxed problem can often be solved more easily than the original problem. The problem of maximizing the Lagrangian function of the dual variables (the Lagrangian multipliers) is the Lagrangian dual problem.

  4. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Although Excel nominally works with 8-byte numbers by default, VBA has a variety of data types. The Double data type is 8 bytes, the Integer data type is 2 bytes, and the general purpose 16 byte Variant data type can be converted to a 12 byte Decimal data type using the VBA conversion function CDec. [12]

  5. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.

  6. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    In a nutshell the relative entropy of reality from a model may be estimated, to within a constant additive term, by a function of the deviations observed between data and the model's predictions (like the mean squared deviation) . Estimates of such divergence for models that share the same additive term can in turn be used to select among models.

  7. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    In fact computability can itself be defined via the lambda calculus: a function F: N → N of natural numbers is a computable function if and only if there exists a lambda expression f such that for every pair of x, y in N, F(x)=y if and only if f x = β y, where x and y are the Church numerals corresponding to x and y, respectively and = β ...

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The primary application of the Levenberg–Marquardt algorithm is in the least-squares curve fitting problem: given a set of empirical pairs (,) of independent and dependent variables, find the parameters ⁠ ⁠ of the model curve (,) so that the sum of the squares of the deviations () is minimized:

  9. Constrained least squares - Wikipedia

    en.wikipedia.org/wiki/Constrained_least_squares

    In constrained least squares one solves a linear least squares problem with an additional constraint on the solution. [ 1 ] [ 2 ] This means, the unconstrained equation X β = y {\displaystyle \mathbf {X} {\boldsymbol {\beta }}=\mathbf {y} } must be fit as closely as possible (in the least squares sense) while ensuring that some other property ...