Search results
Results from the WOW.Com Content Network
The joule (/ dʒ uː l / JOOL, or / dʒ aʊ l / JOWL; symbol: J) is the unit of energy in the International System of Units (SI). [1] In terms of SI base units, one joule corresponds to one kilogram-square metre per square second (1 J = 1 kg⋅m 2 ⋅s −2).
The joule-second also appears in quantum mechanics within the definition of the Planck constant. [2] Angular momentum is the product of an object's moment of inertia, in units of kg⋅m 2 and its angular velocity in units of rad⋅s −1. This product of moment of inertia and angular velocity yields kg⋅m 2 ⋅s −1 or the joule-second.
square meter (m 2) differential element of volume V enclosed by surface S: cubic meter (m 3) electric field: newton per coulomb (N⋅C −1), or equivalently, volt per meter (V⋅m −1) energy: joule (J) Young's modulus: pascal (Pa) or newton per square meter (N/m 2) eccentricity
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
The SI has special names for 22 of these coherent derived units (for example, hertz, the SI unit of measurement of frequency), but the rest merely reflect their derivation: for example, the square metre (m 2), the SI derived unit of area; and the kilogram per cubic metre (kg/m 3 or kg⋅m −3), the SI derived unit of density.
A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J/C kg⋅m 2 ⋅s −3 ⋅A −1: R; Z; X electric resistance; impedance; reactance: ohm: Ω = V/A kg⋅m 2 ⋅s −3 ⋅A −2: ρ resistivity: ohm metre: Ω⋅m kg⋅m 3 ⋅s −3 ⋅A −2: P electric power: watt: W = V⋅A kg⋅m 2 ⋅s −3 ...
Although Boltzmann first linked entropy and probability in 1877, the relation was never expressed with a specific constant until Max Planck first introduced k, and gave a more precise value for it (1.346 × 10 −23 J/K, about 2.5% lower than today's figure), in his derivation of the law of black-body radiation in 1900–1901. [11]
t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.