Search results
Results from the WOW.Com Content Network
The lower-energy MO is bonding with electron density concentrated between the two H nuclei. The higher-energy MO is anti-bonding with electron density concentrated behind each H nucleus. Molecular orbital (MO) theory uses a linear combination of atomic orbitals (LCAO) to represent molecular orbitals resulting from bonds between atoms.
Valence bond theory complements molecular orbital theory, which does not adhere to the valence bond idea that electron pairs are localized between two specific atoms in a molecule but that they are distributed in sets of molecular orbitals which can extend over the entire molecule. Although both theories describe chemical bonding, molecular ...
In chemistry and atomic physics, an electron shell may be thought of as an orbit that electrons follow around an atom's nucleus.The closest shell to the nucleus is called the "1 shell" (also called the "K shell"), followed by the "2 shell" (or "L shell"), then the "3 shell" (or "M shell"), and so on further and further from the nucleus.
An atom with one or two electrons fewer than a closed shell is reactive due to its tendency either to gain the missing valence electrons and form a negative ion, or else to share valence electrons and form a covalent bond. Similar to a core electron, a valence electron has the ability to absorb or release energy in the form of a photon.
A number of quantum mechanical models were developed, such as band structure calculations based on molecular orbitals, and the density functional theory. These models either depart from the atomic orbitals of neutral atoms that share their electrons, or (in the case of density functional theory) departs from the total electron density.
An electron state has spin number s = 1 / 2 , consequently m s will be + 1 / 2 ("spin up") or - 1 / 2 "spin down" states. Since electron are fermions they obey the Pauli exclusion principle: each electron state must have different quantum numbers. Therefore, every orbital will be occupied with at most two electrons, one ...
Einstein's static universe, aka the Einstein universe or the Einstein static eternal universe, is a relativistic model of the universe proposed by Albert Einstein in 1917. [ 1 ] [ 2 ] Shortly after completing the general theory of relativity , Einstein applied his new theory of gravity to the universe as a whole.
Valence shell electron pair repulsion (VSEPR) theory (/ ˈ v ɛ s p ər, v ə ˈ s ɛ p ər / VESP-ər, [1]: 410 və-SEP-ər [2]) is a model used in chemistry to predict the geometry of individual molecules from the number of electron pairs surrounding their central atoms. [3]