enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    In numerical analysis, Bairstow's method is an efficient algorithm for finding the roots of a real polynomial of arbitrary degree. The algorithm first appeared in the appendix of the 1920 book Applied Aerodynamics by Leonard Bairstow. [1] [non-primary source needed] The algorithm finds the roots in complex conjugate pairs using only real ...

  3. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding one root; Finding all roots; Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work ...

  4. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  5. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    Before continuing to the roots of (), it might be necessary to numerically improve the accuracy of the root approximations for (), for instance by Newton's method. Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity.

  6. Laguerre's method - Wikipedia

    en.wikipedia.org/wiki/Laguerre's_method

    Laguerre's method may even converge to a complex root of the polynomial, because the radicand of the square root may be of a negative number, in the formula for the correction, , given above – manageable so long as complex numbers can be conveniently accommodated for the calculation. This may be considered an advantage or a liability ...

  7. Jenkins–Traub algorithm - Wikipedia

    en.wikipedia.org/wiki/Jenkins–Traub_algorithm

    Using this deflation guarantees that each root is computed only once and that all roots are found. The real variant follows the same pattern, but computes two roots at a time, either two real roots or a pair of conjugate complex roots. By avoiding complex arithmetic, the real variant can be faster (by a factor of 4) than the complex variant.

  8. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is a powerful technique—in general the convergence is quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties with the method.

  9. Aberth method - Wikipedia

    en.wikipedia.org/wiki/Aberth_method

    The updates of the roots may be executed as a simultaneous Jacobi-like iteration where first all new approximations are computed from the old approximations or as a sequential Gauss–Seidel-like iteration that uses each new approximation from the time it is computed. A very similar method is the Newton-Maehly method.