enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Prompt engineering - Wikipedia

    en.wikipedia.org/wiki/Prompt_engineering

    In "auto-CoT", [46] a library of questions are converted to vectors by a model such as BERT. The question vectors are clustered. Questions nearest to the centroids of each cluster are selected. An LLM does zero-shot CoT on each question. The resulting CoT examples are added to the dataset. When prompted with a new question, CoT examples to the ...

  3. Zero-shot learning - Wikipedia

    en.wikipedia.org/wiki/Zero-shot_learning

    The name is a play on words based on the earlier concept of one-shot learning, in which classification can be learned from only one, or a few, examples. Zero-shot methods generally work by associating observed and non-observed classes through some form of auxiliary information, which encodes observable distinguishing properties of objects. [1]

  4. Response-prompting procedures - Wikipedia

    en.wikipedia.org/wiki/Response-prompting_procedures

    The goal of response prompting is to transfer stimulus control from the prompt to the desired discriminative stimulus. [1] Several response prompting procedures are commonly used in special education research: (a) system of least prompts, (b) most to least prompting, (c) progressive and constant time delay, and (d) simultaneous prompting.

  5. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    A question answering task is considered "open book" if the model's prompt includes text from which the expected answer can be derived (for example, the previous question could be adjoined with some text which includes the sentence "The Sharks have advanced to the Stanley Cup finals once, losing to the Pittsburgh Penguins in 2016." [125]).

  6. Few-shot learning - Wikipedia

    en.wikipedia.org/wiki/Few-shot_learning

    Few-shot learning and one-shot learning may refer to: Few-shot learning, a form of prompt engineering in generative AI; One-shot learning (computer vision)

  7. One-shot learning (computer vision) - Wikipedia

    en.wikipedia.org/wiki/One-shot_learning...

    One-shot learning is an object categorization problem, found mostly in computer vision. Whereas most machine learning -based object categorization algorithms require training on hundreds or thousands of examples, one-shot learning aims to classify objects from one, or only a few, examples.

  8. Video modeling - Wikipedia

    en.wikipedia.org/wiki/Video_modeling

    Video modeling is a form of video-based intervention (VBI); other forms include video prompting, computer-based video instruction, and video priming. Several dimensions of effectiveness have been identified for VBI, but important questions regarding VBI remain largely unanswered, both practically and theoretically. [3]

  9. OpenAI - Wikipedia

    en.wikipedia.org/wiki/OpenAI

    OpenAI also makes GPT-4 available to a select group of applicants through their GPT-4 API waitlist; [247] after being accepted, an additional fee of US$0.03 per 1000 tokens in the initial text provided to the model ("prompt"), and US$0.06 per 1000 tokens that the model generates ("completion"), is charged for access to the version of the model ...